
Selected Topics in Probability (Spring 2021)

Homework Problems

Instructor: Ron Peled, Tel Aviv University

September 22, 2021

1 Random walks and electrical networks

1. (Reversible Markov chains and electrical networks)

Let S be a finite or countably infinite set and let P : S × S → [0, 1] be the
transition matrix of a Markov chain with state space S (i.e.,

∑
j P (i, j) = 1 for

each i). Assume that the chain is irreducible in the sense that for each i, j ∈ S
there exists a positive integer t such that P t(i, j) > 0.

The chain is called reversible if there exists a vector π : S → [0,∞), π 6≡ 0,
such that

π(i)P (i, j) = π(j)P (j, i) for all i, j ∈ S. (1)

(the definition implies that π is a stationary vector for P . That is, πP = π
when π is considered as a row vector).

The chain is representable by an (electrical) network if there exists c : S ×
S → [0,∞) (non-negative conductances), satisfying that c(i, j) = c(j, i) and
c(i) :=

∑
k∈S c(i, k) ∈ (0,∞) for all i, j ∈ S, such that

P (i, j) =
c(i, j)

c(i)
for all i, j ∈ S. (2)

Prove that the chain is reversible if and only if it is representable by a network.

2. (Rough embedding and rough isometry)

A rough embedding of a metric space (X1, d1) in another metric space (X2, d2)
is a function f : X1 → X2 satisfying that for real α > 1, β > 0,

1

α
d1(x, y)− β 6 d2(f(x), f(y)) 6 αd1(x, y) + β for all x, y ∈ X1. (3)

Two metric spaces (X1, d1) and (X2, d2) are said to be rough isometric if there
exists a function f : X1 → X2 and real α > 1 and β, γ > 0 such that f
satisfies (3) and, in addition,

for every y ∈ X2 there exists an x ∈ X1 such that d2(f(x), y) 6 γ. (4)

We may (and will) regard a graph G = (V,E) as a metric space (V, d) by letting
d be the graph distance between the vertices.
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(a) Let G1 be the infinite rooted binary tree (i.e., the tree with all vertices of
degree 3 except the root which has degree 2). Let G2 be the same graph
with an additional infinite ray attached to the root. Prove that G1 has a
rough embedding in G2 and G2 has a rough embedding in G1, but G1 and
G2 are not rough isometric.

(b) Prove that the rough isometry relation is an equivalence relation on metric
spaces.

Remark: As a first example, it is interesting to note that the lattice Zd and the
Euclidean space Rd are rough isometric.

Remark: Rough embedding and rough isometry are also called quasi-isometric
embedding and quasi isometry.

3. (Rough embeddings and random walks; see definitions in previous problem)

(a) Let G1 be a bounded degree graph (i.e., there is a uniform bound to the
degrees of all vertices) and let G2 be a graph. Suppose that G1 is transient
and that G1 has a rough embedding in G2. Prove that G2 is transient.

Remark: In particular, all bounded degree graphs in a rough isometry
equivalence class are simultaneously recurrent or simultaneously transient.

(b) Find an example of a transient graph (necessarily of unbounded degree)
which has a rough embedding in Z.

The next three problems are taken from the chapter on random walks and electrical
networks in the book of Asaf Nachmias.

4. (The Nash-Williams inequality is not necessary for recurrence)

Let T be a rooted tree defined as follows: The root is the unique vertex at level
0 and it has two children. For each n > 1, the tree has 2n vertices at level n,
denoted vn1 , v

n
2 , . . . , v

n
2n , with the vertex vnk having one child if 1 6 k 6 2n−1

and having three children if 2n−1 < k 6 2n.

(a) Prove that T is recurrent.

(b) Prove that
∑

n |Πn|−1 < ∞ for any collection of disjoint edge cutsets Πn

separating the root from infinity (so that recurrence cannot be deduced
from the Nash-Williams inequality).

5. (Effective resistance of dual planar graph)

Let G be a finite planar graph with two distinct vertices a, z. Consider an
embedding of G in R2 in which a is the leftmost vertex on the real axis, z is the
right-most vertex on the real axis and both a and z lie on the outer face. Create
a dual graph to G by first splitting the outer face by adding the rays from a
to −∞ and from z to +∞ and then letting G∗ be the dual of the resulting
drawing (i.e., the dual vertices are the faces of the drawing). Write a∗, z∗ for
the vertices of G∗ which correspond to the split outer face of G. Assume that
all edge resistances are 1 and prove that

Reff(a↔ z;G) =
1

Reff(a∗ ↔ z∗;G∗)
. (5)
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6. Let G = (V,E) be a graph with V = Z and with E = ∪∞k=0Ek where E0 :=
{{i, i+ 1} : i ∈ Z} and

Ek :=

{{
2k
(
n− 1

2

)
, 2k
(
n+

1

2

)}
: n ∈ Z

}
. (6)

Is G recurrent or transient? (provide a complete proof either way)

7. (Transient wedges in Z3)

Let f : {1, 2, . . .} → {1, 2, . . .} be non-decreasing. Define the wedge Wf to be
the induced subgraph of Z3 on the vertex set

{(x, y, z) : x, y, z > 1, y 6 x and z 6 f(x)}. (7)

Prove that Wf is recurrent if and only if
∑

k>1
1

kf(k) =∞.

Remark: This result is due to Terry Lyons (1983).

2 Galton–Watson trees

The next two exercises analyze a critical Galton–Watson tree. The following are their
common definitions and assumptions.

Let X be a random variable supported on {0, 1, 2, . . .}. Consider a Galton–Watson
tree with offspring distribution X and let Zn be the number of descendants at level n
(so that Z0 := 1 and, conditioned on Zn−1, Zn is the sum of Zn−1 independent copies
of X). We assume that the tree is critical, i.e., that EX = 1 and P(X = 1) < 1,
and study the limiting behavior of Zn following Kolmogorov 1938, Yaglom 1947 and
Kesten–Ney–Spitzer 1966. We do so under the further assumption that VarX <∞.

Let f(s) := E sX be the probability generating function ofX, defined for 0 6 s 6 1
(with f(0) := P(X = 0)). Define, inductively, f0(s) := s and fn(s) := f(fn−1(s)) for
n > 1, so that fn is the probability generating function of Zn.

1. (The asymptotics of fn)

In this problem we prove that

lim
n→∞

1

n

(
1

1− fn(s)
− 1

1− s

)
=

VarX

2
, uniformly in 0 6 s < 1. (8)

To this end, set α := VarX
2 and define a function ε : [0, 1)→ R by

f(t) := 1 + (t− 1) + α(t− 1)2 − ε(t)(t− 1)2, for 0 6 t < 1. (9)

Define also a function δ : [0, 1)→ R by

δ(t) :=
1

1− t
− 1

1− f(t)
+ α. (10)

(a) Prove that 0 6 ε 6 α for all t, that ε is a decreasing function with
limt↑1 ε(t) = 0 and that

(1− t)(α− ε(t)) =
f(t)− t

1− t
< 1. (11)

Hint: You may prove first that ε(t) = E
(∑X−1

j=2

∑j−1
v=1(1− tv)

)
.

3



(b) Prove that
−α2(1− t) 6 δ(t) 6 ε(t) for 0 6 t < 1. (12)

(c) Deduce from (12) that limk→∞ δ(fk(s))→ 0 uniformly in 0 6 s < 1.

(d) Deduce (8) by considering 1
n

∑n−1
k=0 δ(fk(s)).

2. (The limiting behavior of Zn)

(a) (Survival probability) Deduce from (8) that

lim
n→∞

n · P(Zn > 0) =
2

VarX
. (13)

Remark: In particular, the probability to survive for n levels is of order 1
n

for critical Galton–Watson trees. Equation (13) holds also when VarX =
∞ in the sense that the limit in the left-hand side is zero.

(b) (Distribution upon survival) Deduce from (8) that

lim
n→∞

P
(

2Zn
nVarX

> x |Zn > 0

)
= e−x, for all x > 0. (14)

Remark: In particular, the number of descendants at level n is of order n,
when conditioned on surviving to level n (consistently with the fact that
EZn = 1). Determining the limiting behavior when VarX = ∞ appears
to be open.

Reminder: The uniqueness and continuity theorems for Laplace trans-
forms: The Laplace transform of a probability measure µ supported in
[0,∞) is the function Tµ : [0,∞)→ (0,∞) defined by Tµ(λ) :=

∫
e−λxdµ(x).

(i) If Tµ = Tν then µ = ν. (ii) If limn→∞ Tµn(λ) exists for each λ > 0,
and the limit is continuous at λ = 0, then there exists a probability mea-
sure µ such that µn converges weakly to µ (and, in particular, Tµn → Tµ
pointwise).

Remark: Observe that the limiting behavior depends only on the variance of
X - a form of universality.

3. (Generating uniform trees using Galton–Watson trees)

Let n > 1 be an integer. A labelled tree on n vertices is a graph on the vertex
set {1, . . . , n} which is a tree. The number of such trees is nn−2 (this is Cayley’s
formula, originally proved by Borchardt) but this fact will not be needed here.

An ordered tree (or plane tree) is a rooted tree for which an ordering is specified
for the children of each vertex.

(a) Let µ be the distribution on {0, 1, 2, . . .} with µ(k) = 2−(k+1) (a type of
geometric distribution). Let T be a Galton–Watson tree with offspring
distribution µ, conditioned to have exactly n vertices; note that T is a
random ordered tree. Prove that T is uniformly distributed over all ordered
trees with n vertices.
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(b) Let T be a Galton–Watson tree with offspring distribution Poisson(1),
conditioned to have exactly n vertices. Do the following: (i) Assign the
label 1 to the root of T , (ii) randomly assign the labels 2, . . . , n to the other
vertices of T via a uniform permutation and (iii) forget the ordering of T .
Prove that the resulting unordered, labelled tree is uniformly distributed
on all labelled trees with n vertices.

Remark: The above constructions allow to draw conclusions on uniformly-
sampled labelled trees and uniformly-sampled ordered trees from the theory of
critical Galton–Watson trees.

3 Stationarity and ergodicity

1. (Ergodicity of two-sided sequence)

Let (S,S) be a measurable space. Write ϕZ for the shift operation on SZ and
ϕN for the shift operation on SN (here N = {1, 2, . . .} and in both cases we
mean that ϕ((xn)) = (xn+1)). Write IZ and IN for the corresponding invariant
sigma algebras (i.e., all events A satisfying that ϕ−1A = A).

Let X = (Xn)n∈Z be a stationary sequence taking values in S. Write Y for its
restriction to N, i.e., Y = (Yn)n∈N defined by Yn = Xn. Prove that X and Y
are simultaneously ergodic (i.e., P(X ∈ A) ∈ {0, 1} for all A ∈ IZ if and only if
P(Y ∈ B) ∈ {0, 1} for all B ∈ IN).

Hint: In one direction, show that for each A ∈ IZ there exists B ∈ IN such
that A = SZ60 ×B almost everywhere with respect to the distribution of X.

For the next two exercises, let (Ω,F) be a measurable space and ϕ : Ω → Ω a
measurable map. Let I be the invariant sigma algebra (all A ∈ F with ϕ−1A = A).
Recall that a probability measure P on Ω is preserved by ϕ if P(ϕ−1A) = P(A) for all
A ∈ F , and that such a P is called ergodic if

P(A) ∈ {0, 1} for all A ∈ I. (15)

2. (The probabilities of invariant events characterize stationary measures)

Suppose P1 and P2 are probability measures on Ω which are preserved by ϕ.
Prove that if P1(A) = P2(A) for all A ∈ I then P1 = P2.

Hint: Use Birkhoff’s ergodic theorem.

Remark: A stronger fact is true (on Borel spaces): every stationary distribution
can be decomposed uniquely as a mixture of ergodic distributions (the ergodic
measures are the extreme points of the convex set of stationary measures).

3. (Tail triviality, mixing and ergodicity)

A probability measure P on Ω (not necessarily preserved by ϕ) is said to have
trivial tail if

P(A) ∈ {0, 1} for all A ∈ T , (16)

where the tail sigma algebra T consists of all events A ∈ F satisfying that for
every n > 1 there is a Bn ∈ F with A = ϕ−nBn.
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A probability measure P on Ω which is preserved by ϕ is called mixing if

lim
n→∞

P(A ∩ ϕ−nB) = P(A)P(B) for all A,B ∈ F . (17)

(a) Prove that a probability measure P on Ω (not necessarily preserved by ϕ)
has trivial tail if and only if

lim
n→∞

sup
B∈F
|P(A ∩ ϕ−nB)− P(A)P(ϕ−nB)| = 0. (18)

Remark: If P is preserved by ϕ then P(ϕ−nB) = P(B), which simpli-
fies (18) and makes it stronger than the mixing property (17).

(b) Let P be a probability measure on Ω which is preserved by ϕ. Prove that
P is ergodic if and only if

1

n

n−1∑
k=0

P(A ∩ ϕ−kB)→ P(A)P(B) for all A,B ∈ F . (19)

Remark: We thus see that (when P is preserved by ϕ), tail triviality is
stronger than mixing and mixing is stronger than ergodicity. The next
part shows that the latter inclusion is strict and it can also be shown that
the former inclusion is strict.

(c) Recall the rotation of the circle transformation: Ω = [0, 1], ϕ(ω) = ω + θ
(mod 1) for an irrational θ and P being Lebesgue measure on Ω. Prove
that P is not mixing.

4 Subadditive ergodic theorem and first-passage perco-
lation

1. (Last-passage percolation on a tree / maximum of branching random walk)

Let T be a binary tree with root vertex o (root of degree 2, all other vertices
of degree 3). To each edge e of T associate an independent real-valued random
variable ηe, all having a common distribution ν. For each vertex v of T , let Sv
be the sum of the ηe along the edges of the path from o to v. Let Dn be the
set of vertices at distance n from v. Set

Mn := max{Sv : v ∈ Dn} (20)

to be the last-passage time from o to level n (or, with a different interpretation,
the maximum at level n of a branching random walk).

Assume that

E(eλX) <∞ for all real λ when X is a random variable distributed as ν.
(21)

(a) Prove that E(Mn) <∞.

(b) Prove that there exists a deterministic constant x for which

Mn

n
→ x almost surely and in L1. (22)
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(c) Prove that
x 6

√
2 log 2 (23)

when ν is the standard normal distribution.

Remark: In fact, x =
√

2 log 2 (for the standard normal distribution) and
this can be proved by a “modified” second moment argument. By modified
we mean that the basic approach of calculating the second moment of the
number of v ∈ Dn with large Sv does not suffice in this case and one
needs to modify it by considering those v ∈ Dn which satisfy additional
restrictions. For details see, e.g., the lecture notes of Zeitouni on branching
random walks and Gaussian fields.

2. (Dekking–Host argument for tightness)

We continue with the last-passage percolation on a tree setup introduced in the
previous problem. Suppose, in addition to (21), that the distribution of ν has
mean zero and is supported on (−∞, 1].

(a) Prove that
E(Mn+1 −Mn) 6 1.

(b) Write e1 = (o, v1), e2 = (o, v2) for the two edges incident to the root
vertex. When w is a descendant of v, write Svw for the sum of the ηe along
the edges of the path from v to w. Let

M1
n := max{Sv1w : w ∈ Dn+1, w is a descendant of v1},

M2
n := max{Sv2w : w ∈ Dn+1, w is a descendant of v2},

be the last-passage times from v1 and v2, respectively, to their descendants
at level n+ 1.

Observe that Mn+1 = max{M1
n + ηe1 ,M

2
n + ηe2}. Use this fact and the

identity max{a, b} = 1
2(a+ b+ |a− b|) to deduce that

E(Mn+1 −Mn) >
1

2
E |Mn −M ′n| (24)

where M ′n is an independent copy of Mn.

(c) Deduce from the previous two parts that the sequence (Mn − E(Mn)) is
tight. That is,

lim
M↑∞

sup
n

P(|Mn − E(Mn)| > M) = 0.

Remark: The last part shows that the fluctuations of the last-passage time
on a binary tree are of order at most 1 (and it is simple to see that they
cannot be of even lower order).

3. (Poissonian directed last-passage percolation)

Let P be a Poisson process of unit intensity in the non-negative orthant [0,∞)d,
d > 2. For x ∈ [0,∞)d, denote by Px the collection of paths in [0,∞)d from
the origin to x which are non-decreasing in every coordinate (that is, the set of
continuous maps p : [0, 1] → [0,∞)d with p(0) = (0, . . . , 0) and p(1) = x such
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that p(t)−p(s) ∈ [0,∞)d for every 0 6 s 6 t 6 1). Define Tx to be the maximal
number of points of P on a path of Px (the maximum is realized on a piecewise
linear path).

(a) Prove that for every x ∈ [0,∞)d the limit

µ(x) := lim
n→∞

1

n
Tn·x

exists almost surely and in L1 (with the limit over positive integer n).

(b) Let λ := µ(1, 1, . . . , 1). Find explicit λ0, λ1 ∈ (0,∞), depending on the
dimension d, such that λ0 < λ < λ1.

(c) Use the symmetries of the Poisson process to prove that

µ(x) = λ · (x1x2 · · ·xd)1/d for x = (x1, . . . , xd) ∈ [0,∞)d.

Remark: In dimension d = 2, Vershik–Kerov (1977) and Logan–Shepp (1977)
proved that λ = 2. Later, two-dimensional Poissonian directed last-passage
percolation became one of the central examples of an integrable model of last-
passage percolation following the breakthrough work of Baik–Deift–Johansson
(1999). A beautiful introduction to the topic is in the book “The surprising
mathematics of longest increasing subsequences” by Dan Romik.

5 Ising and Spin O(n) models

1. (Programming challenge - generating beautiful simulations of the Heisenberg
model (the spin O(3) model))

Let n > 1 be an integer, let β > 0 and let G = (V,E) be a finite graph. We
simulate the spin O(n) model, at inverse temperature β on the graph G, using
a Markov Chain Monte Carlo (MCMC) algorithm. By an MCMC algorithm we
mean that we run a Markov chain (σk) whose stationary measure is the spin
O(n) distribution and output its state σK for some sufficiently large K (it takes
some experimentation, or theory, to find a value for K for which it appears that
the chain has “mixed”). We now describe the Markov chain that will be used,
which is called the Wolff cluster algorithm:

(a) Let σ0 : V → Sn−1 be an arbitrary initial configuration.

(b) For 0 6 k 6 K − 1 do:

i. Sample uniformly at random a vertex x ∈ V .

ii. Sample uniformly at random a unit vector s ∈ Sn−1.

iii. Create a random edge configuration ω ⊆ E by placing each edge
e = {u, v} ∈ E into ω with probability ps(σu, σv), independently
between edges. The probability ps(a, b) is given by the formula

ps(a, b) := max
{

0, 1− exp
(
− 2β〈s, a〉〈s, b〉

)}
(25)

where 〈s, t〉 :=
∑n

i=1 siti is the standard inner product in Rn.
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iv. Let Cx be the connected component of x in the edge configuration ω.
Define σk+1 by

σk+1(v) :=

{
σk(v)− 2〈s, σk(v)〉s v ∈ Cx
σk(v) v /∈ Cx

(26)

(i.e., the spins in Cx are reflected in the hyperplane orthogonal to s).

(c) Output σK .

Use the Wolff cluster algorithm to generate samples of the Heisenberg model
(the spin O(3) model) on the two-dimensional discrete torus with side length
100 (the graph with vertex set {1, 2, . . . , 100}2, where two vertices are adjacent
if they differ in exactly one coordinate, and by exactly 1 modulo 100 in that
coordinate) - try a few values for β and for each one try to find a good value
for K.

The challenge in this problem is to find a good way to visualize the simulation
results. That is, to find a visually pleasant mapping from the sphere S2 to a
color palette. A simulation is presented in Figure 3 in the “Lectures on the
spin and loop O(N) models” notes. However, the mapping chosen there is
visually unsatisfactory since most colors appear to be either red, green or blue,
without significant interpolation between these. Find a way to improve this
(this may involve experimenting with color palettes and/or searching for ideas
on the internet).

Remarks: Good results may be presented on the class webpage with the stu-
dent’s agreement.

In the Ising model case (n = 1), the choice of s ∈ {−1, 1} does not affect the
formulas (25) and (26) and hence s may be ignored.

For increased efficiency of the algorithm, it suffices to sample at every iteration
only those edges of ω which determine the connected component Cx.

More information on the Wolff cluster algorithm and related operations can
be found, for instance, in section 2 of the paper “Rarity of extremal edges in
random surfaces and other theoretical applications of cluster algorithms”.

2. (Localization of 1-Lipschitz integer-valued height functions at low temperature)

Let d > 2 and L > 1 be integers. Let x > 0. Let G = (V,E) be the d-
dimensional discrete cube of side length 2L + 1 (the graph with vertex set
{−L,−L + 1, . . . , L}d with two vertices adjacent if they differ in exactly one
coordinate, and by exactly one in that coordinate). The configuration space of
1-Lipschitz integer-valued height functions with zero boundary conditions is

Ω :=

{
φ : V → Z :

φ(u)− φ(v) ∈ {−1, 0, 1} for {u, v} ∈ E,

φ(v) = 0 for v with ‖v‖∞ = L

}
. (27)

We place a probability measure µx on Ω by setting the probability of each φ ∈ Ω
to be proportional to xN(φ) where

N(φ) := {{u, v} ∈ E : φ(u) 6= φ(v)} (28)
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is the number of nearest-neighbor pairs where the values of φ differ.

Prove that there exists some x0 > 0, which may depend on d but not on L,
such that whenever 0 < x < x0 then

µx(φ(v) 6= 0) < 0.01 for all v ∈ V . (29)

Hint: Find a way to adapt the Peierls argument to this setting.

3. (Delocalization of two-dimensional real-valued height functions)

Let U : R→ R be a twice-continuously differentiable function satisfying

(a) (even function) U(x) = U(−x) for all x ∈ R.

(b) (growth at infinity) U(x)
log x →∞ as x→∞.

(c) (bounded second derivative) supx∈R U
′′(x) <∞.

(one example to have in mind is the function U(x) = x2).

Let d = 2 and let L > 1 be an integer. Let G = (V,E) be the two-dimensional
discrete square of side length 2L + 1 as defined in the previous problem (but
now with d = 2). The configuration space of real-valued height functions with
zero boundary conditions is

Ω := {φ : V → R : φ(v) = 0 for v with ‖v‖∞ = L}. (30)

We place a probability measure µ on Ω by setting the density of each φ ∈ Ω to
be proportional to

exp

− ∑
{u,v}∈E

U(φ(u)− φ(v))

 . (31)

Here, the density is with respect to the natural product Lebesgue measure
(
∏
v dφ(v) over all v ∈ V with ‖v‖∞ 6= L). It is not obvious that (31) can

indeed be normalized to be a probability measure but this is ensured by the
growth at infinity assumption on U .

Let φ be sampled from µ. Prove that there exists some c > 0, which may
depend on U but not on L, such that

Var(φ(0, 0)) > c logL. (32)

Hint: Adapt the proof of the Mermin–Wagner theorem (no continuous-symmetry
breaking in two dimensions) to this setting.
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